Recall the first two equations intersect in the line
\begin{equation*}
\left[ \begin{matrix} x\\ y\\z \end{matrix} \right] =
\left[\begin{matrix} 2-2z\\ -1+z\\z \end{matrix} \right]=
\left[\begin{matrix} 2\\ -1\\0 \end{matrix} \right] +z\left[\begin{matrix} -2\\ 1\\1 \end{matrix} \right].
\end{equation*}
Solving for when \(x=2\text{,}\) we see \(t=0\text{.}\) Plugging \(t=0\) into the parametric equation for the line we obtain the point \((2,-1,0)\text{.}\) Similarly when \(x=-2\text{,}\) we find \(t=2\text{,}\) giving the point \((-2,1,2)\text{.}\)
The last two equations intersect in the line
\begin{equation*}
\left[ \begin{matrix} x\\ y\\z \end{matrix} \right] =
\left[\begin{matrix} -1\\ -1+z\\z \end{matrix} \right]=
\left[\begin{matrix} -1\\ -1\\0 \end{matrix} \right] +z\left[\begin{matrix} 0\\ 1\\1 \end{matrix} \right].
\end{equation*}
Here \(x\) is always \(-1\text{.}\) Instead we solve for when \(y=-2\) and \(2\text{.}\) We find \(t=-1\) and \(3\text{,}\) giving us the two points \((-1,2,-1)\) and \((-1,2,3)\text{.}\)
The first and last equations intersect in the line
\begin{equation*}
\left[ \begin{matrix} x\\ y\\z \end{matrix} \right] =
\left[\begin{matrix} 1/2-z\\ 1/2\\z \end{matrix} \right]=
\left[\begin{matrix} 1/2\\ 1/2\\0 \end{matrix} \right] +z\left[\begin{matrix} -1\\ 0\\1 \end{matrix} \right].
\end{equation*}
Here \(x=-2,2\) when \(t=5/2,-3/2\) giving us the points \((-2,1/2,5/2)\) and \((2,1/2,-3/2)\text{.}\)
Recall to plot the lines between two points we create arrays of the \(x\)-values, \(y\)-values, and \(z\)-values, then plot the line between them.